已知3阶矩阵A有3维向量A满足A^3X=3AX-A^2X,且向量组X,AX,A^2X线性无关.(1)记P=(X,AX,A^2X),求三阶矩阵B使AP=PB.(2)求|A|

问题描述:

已知3阶矩阵A有3维向量A满足A^3X=3AX-A^2X,且向量组X,AX,A^2X线性无关.(1)记P=(X,AX,A^2X),求三阶矩阵B使AP=PB.(2)求|A|

(1) AP = A(X,AX,A^2X)
= (AX,A^2X,A^3X)
= (AX,A^2X,3AX-A^2X)
= (X,AX,A^2X)B = PB.
其中 B =
0 0 0
1 0 3
0 1 -1
(2) 易知 |B| = 0.
由向量组X,AX,A^2X线性无关, 所以P可逆
所以 A = PBP^-1
所以 |A| = |P||B||P^-1| = 0.