已知等差数列﹛An﹜的前n项和为Sn,公差d≠0,且S3+S5=50,A1,A4,A13成等比数列.设﹛An分之Bn﹜是首相为1,
问题描述:
已知等差数列﹛An﹜的前n项和为Sn,公差d≠0,且S3+S5=50,A1,A4,A13成等比数列.设﹛An分之Bn﹜是首相为1,
公比为3的等比数列,求数列﹛Bn﹜的前N项和Tn
答
a1、a4、a13成等比数列,则a4²=a1×a13(a1+3d)²=a1(a1+12d)整理,得9d²-6a1d=0d(3d-2a1)=0d≠0,因此只有3d-2a1=0a1=(3/2)dS3+S5=3a1+3d+5a1+10d=8a1+13d=8(3/2)d+13d=25d=50d=2a1=(3/2)d=3an=a1+(n-1)d...