解三角形—在△ABC中,已知a,b,c的对应角为A,B,C,且满足等式tanB=cos(B-C)/[sinA+sin(B-C)].
问题描述:
解三角形—在△ABC中,已知a,b,c的对应角为A,B,C,且满足等式tanB=cos(B-C)/[sinA+sin(B-C)].
若a=2,试求函数y=(b+c)/(bc+1)的最小值.
答
∵sinA=sin(B+C) ∴tanB=cos(B-C)/〔sinA+sin(B-C)〕 =(cosC*cosB+sinC*sinB)/[sin(B+C)+sin(B-C)] =(cosC*cosB+sinC*sinB)/(2*sinC*cosB) =1/(2tanC)+tanB/2 ∴2tanB=1/tanC+tanB tanB*tanC=1 sinB*sinC/(cosB*cosC...