若实数x、y满足x^2+y^2=1,则2xy/(x+y-1)的最小值为

问题描述:

若实数x、y满足x^2+y^2=1,则2xy/(x+y-1)的最小值为

∵2xy
=(x+y)^2-(x^2+y^2)
=(x+y)^2-1
=(x+y+1)(x+y-1)
∴2xy/(x+y-1)
=x+y+1
≥-√[2(x^2+y^2)]+1
=1-√2,
∴2xy/(x+y-1)的最小值为1-√2.