一个等腰三角形的两个外角的比为1:4,则它的三个内角分别是_.
问题描述:
一个等腰三角形的两个外角的比为1:4,则它的三个内角分别是______.
答
设这两个外角等于x,4x,
①若底角的外角是x,则有2(180°-x)+(180°-4x)=180°,
解得x=60°,
则底角=120°,不合题意,舍去.
②若顶角的外角是x,则有(180°-x)+2(180°-4x)=180°,
解得x=40°,
则顶角=140°,那么底角=20°,
故它的三个内角分别是140°、20°、20°.
故答案为:140°、20°、20°.