若实数a,b,c满足2a+2b=2a+b,2a+2b+2c=2a+b+c,则c的最大值是_.

问题描述:

若实数a,b,c满足2a+2b=2a+b,2a+2b+2c=2a+b+c,则c的最大值是______.

由基本不等式得2a+2b2

2a2b
=2×2
a+b
2
,即2a+b2
2a2b
=2×2
a+b
2
,所以2a+b≥4,
令t=2a+b,由2a+2b+2c=2a+b+c可得2a+b+2c=2a+b2c,所以2c=
t
t−1
=1+
1
t−1

因为t≥4,所以1<
t
t−1
4
3
,即1<2c
4
3
,所以0<c≤log2
4
3
=2−log23

故答案为:2-log23