若实数a,b,c满足2a+2b=2a+b,2a+2b+2c=2a+b+c,则c的最大值是_.
问题描述:
若实数a,b,c满足2a+2b=2a+b,2a+2b+2c=2a+b+c,则c的最大值是______.
答
由基本不等式得2a+2b≥2
=2×2
2a2b
,即2a+b≥2a+b 2
=2×2
2a2b
,所以2a+b≥4,a+b 2
令t=2a+b,由2a+2b+2c=2a+b+c可得2a+b+2c=2a+b2c,所以2c=
=1+t t−1
1 t−1
因为t≥4,所以1<
≤t t−1
,即1<2c≤4 3
,所以0<c≤log24 3
=2−log234 3
故答案为:2-log23