在关于方阵的特征值和特征向量中,为什么一个单根的特征值只能对应一个线性无关特征向量.也就是说为什么R(A-λ0E)=n-1,其中A为n阶方阵,λ0为一个单根的特征值.

问题描述:

在关于方阵的特征值和特征向量中,为什么一个单根的特征值只能对应一个线性无关特征向量.也就是说为什么R(A-λ0E)=n-1,其中A为n阶方阵,λ0为一个单根的特征值.

请你先到百度百科上查一下什么是Jordan标准型.所有有限维线性空间的线性变换都能取一组很好的基,使得其在这组基下对应的矩阵是一个准对角矩阵--Jordan标准型.不妨设A的Jordan标准型是J,则存在可逆矩阵B使得A=B逆JB,...