函数f(x)=sin(2x+π6)cos(2x-π3)的最小正周期为_.
问题描述:
函数f(x)=sin(2x+
)cos(2x-π 6
)的最小正周期为______. π 3
答
函数f(x)=sin(2x+
)cos(2x-π 6
)π 3
=sin[
+(2x-π 2
)]cos(2x-π 3
)π 3
=-cos2(2x-
)π 3
=-
1+cos(4x−
π)2 3 2
=-
-1 2
cos(4x-1 2
π),2 3
∵ω=4,
∴T=
=2π 4
,即函数的最小正周期为π 2
.π 2
故答案为:
π 2