函数f(x)=sin(2x+π6)cos(2x-π3)的最小正周期为_.

问题描述:

函数f(x)=sin(2x+

π
6
)cos(2x-
π
3
)的最小正周期为______.

函数f(x)=sin(2x+

π
6
)cos(2x-
π
3

=sin[
π
2
+(2x-
π
3
)]cos(2x-
π
3

=-cos2(2x-
π
3

=-
1+cos(4x−
2
3
π)
2

=-
1
2
-
1
2
cos(4x-
2
3
π
),
∵ω=4,
∴T=
4
=
π
2
,即函数的最小正周期为
π
2

故答案为:
π
2