已知sinα=2cosα,则sin^2α+2sinαcosα=
问题描述:
已知sinα=2cosα,则sin^2α+2sinαcosα=
答
因为 sin α =2 cos α,
所以 tan α =2.
所以 (sin α)^2 +2 sinα cosα =[ (sin α)^2 +2 sin α cos α ] / [ (sin α)^2 +(cos α)^2 ]
=[ (tan α)^2 +2 tan α ] / [ (tan α)^2 +1 ]
=8/5.
= = = = = = = = =
以上计算可能有误!
弦化切,即原式先除以 (sin α)^2 +(cos α)^2,然后分子分母同时除以 (cos α)^2.
= = = = = = = = =
解法2:
令 x =cos α,
则 sin α =2x.
所以 x^2 +(2x)^2 =1,
解得 x^2 =1/5.
所以 原式 =(2x)^2 +2 *2x *x
=8x^2
=8/5.
= = = = = = = = =
换元法.同角三角函数问题,实质上是代数问题.