已知向量m=(根号3sin(x/4),1),向量n=(cos(x/4),cos^2(x/4))f(x)=m.n
已知向量m=(根号3sin(x/4),1),向量n=(cos(x/4),cos^2(x/4))f(x)=m.n
(2)记f(x)=m.n,在△ABC中,ABC对边为abc,满足(2a-c)cosB=bcosC,求f(A)取值范围.
希望能给出详细过程答案是(1,3/2)
很急
m={√3sin(x/4),1},n={cos(x/4),cos^(x/4)}m*n=√3sin(x/4)*cos(x/4)+1*cos^(x/4)=(√3/2)*sin[2*(x/4)] + {1+cos[2*(x/4)]}/2=(√3/2)*sin(x/2) + (1/2)*cos(x/2) + (1/2)=sin(x/2)*cos(π/6)+cos(x/2)*sin(π/6) + (1/2)=sin(x/2 + π/6) + (1/2) f(x)=sin(x/2 + π/6) + 1/2
则f(A)=sin(A/2 + π/6) + 1/2
由已知:(2a-c)cosB=bcosC ,
根据正弦定理:a/sinA=b/sinB=c/sinC,可得出:
(2sinA-sinC)cosB=sinBcosC
2sinAcosB=sinBcosC+sinCcosB=sin(B+C)
∵A,B,C为三角形的三个内角,必有A=π-B-C
∴sinA=sin(B+C),且sinA>0
2sinAcosB=sinA
cosB=1/2
B=π/3
∴A+C=2π/3
得出A的取值范围是:A∈(0,2π/3)
即:函数f(A)=sin(A/2 + π/6) + 1/2 的自变量A的范围是(0,2π/3)
A/2+π/6 ∈ (π/6 ,π/2)
根据基本正弦函数y=sinx的图像,可得出:
sin(A/2+π/6) ∈ (1/2 ,1)
f(A) ∈ (1,3/2)