(1)求过点A(1,-1),B(-1,1),且圆心C在直线x+y-2=0上的圆的标准方程. (2)一条光线从点A(-2,3)射出,经x轴反射后,与圆(x-3)2+(y-2)2=1相切,求反射线经过所在的直线方程.

问题描述:

(1)求过点A(1,-1),B(-1,1),且圆心C在直线x+y-2=0上的圆的标准方程.
(2)一条光线从点A(-2,3)射出,经x轴反射后,与圆(x-3)2+(y-2)2=1相切,求反射线经过所在的直线方程.

(1)∵圆心C在直线x+y-2=0上
∴设圆的方程为(x-a)2+(y-2+a)2=r2
∵圆C经过点A(1,-1)和B(-1,1),

(1−a)2+(−1−2+a)2r2
(−1−a)2+(1−2+a)2r2
,解之得a=1,r=2
因此所求圆C的标准方程为(x-1)2+(y-1)2=4;
(2)点A(-2,3)关于x轴对称的点为A'(-2,-3),
设反射线与圆相切的切点为B,根据题意得反射线所在直线是A'B所在直线
设直线A'B方程为y+3=k(x+2),即kx-y+2k-3=0
可得圆心(3,2)到直线的距离d=
|5k−5|
k2+1
=r=1
解之得k=
4
3
3
4

由此可得直线A'B方程为4x-3y-1=0或3x-4y-6=0,即为所求反射线所在直线方程.