已知数列an,a1=1,a2=3且a(n+2)=(1+2|cosnπ/2|)an+|sinnπ/2)|
问题描述:
已知数列an,a1=1,a2=3且a(n+2)=(1+2|cosnπ/2|)an+|sinnπ/2)|
(1)证明{a(2k)}为等比数列
答
n=2k-1 (取奇数时)|cosnπ/2|= 0 ,|sinnπ/2|=11+2|cosnπ/2|=1上面的没用n=2k (取偶数时 )|cosnπ/2|= 1 ,|sinnπ/2|=01+2|cosnπ/2|=3a(n+2)=(1+2|cosnπ/2|)an+|sinnπ/2)|=3an+1a[(2k+1)]=3a[2(k)]+1a[(2k+1)]+...