已知椭圆X^2/a^2 +Y^2/b^2 =1上任意一点M(除短轴端点外)与端州两端点B1,B2的连线分别与X轴交于P,Q两点.

问题描述:

已知椭圆X^2/a^2 +Y^2/b^2 =1上任意一点M(除短轴端点外)与端州两端点B1,B2的连线分别与X轴交于P,Q两点.
已知椭圆X^2/a^2 +Y^2/b^2 =1上任意一点M(除短轴端点外)与端州两端点B1,B2的连线分别与X轴交于P,Q两点,O为椭圆的中心.求证|OP|·|OQ|为定值

设M(x0,y0),P(p,0),Q(q,0).
由直线方程的截距式及M,P,B1三点共线,
x0/p-y0/b=1,
p=bx0/(b+y0),
同理
q=bx0/(b-y0).
|OP|·|OQ|=|pq|=b^2x0^2/(b^2-y0^2)
由椭圆方程
x0^2=a^2(b^2-y0^2)/b^2
|OP|·|OQ|=a^2为定值.