解方程组:xy/(x+y)=1/27,yz/(y+z)=1/33,xz/(x+z)=1/30
问题描述:
解方程组:xy/(x+y)=1/27,yz/(y+z)=1/33,xz/(x+z)=1/30
急
答
分别取倒数,得
1/x+1/y=27,1/y+1/z=33,1/z+1/x=30
相加,得1/x+1/y+1/z=90
再减上述每一个方程
解得1/z=63,1/x=57,1/y=60
所以x=1/57,y=1/60,z=1/63如果1/x+1/y=27,1/y+1/z=33,1/z+1/x=30,那么1/x+1/y+1/z=(27+33+30)/2=45,怎么等于90呢,你是不是算错了?