求和:sn=1/2^2-1+1/4^2-1+.1/(2n)^2-1
问题描述:
求和:sn=1/2^2-1+1/4^2-1+.1/(2n)^2-1
答
第n个加数是:1/[(2n)²-1]=1/[(2n+1)(2n-1)]=(1/2)[1/(2n-1)]-[1/(2n+1)],则:
S=(1/2){[(1/1)-(1/3)]+[(1/3)-(1/5)]+…+[1/(2n-1)-1/(2n+1)]}
=(1/2)[1-1/(2n+1)]
=(n)/(2n+1)