Sn表示等差数列{an}的前n项的和,且S4=S9,a1=-12 (1)求数列的通项an及Sn; (2)求和Tn=|a1|+|a2|+…+|an|
问题描述:
Sn表示等差数列{an}的前n项的和,且S4=S9,a1=-12
(1)求数列的通项an及Sn;
(2)求和Tn=|a1|+|a2|+…+|an|
答
(1)∵S4=S9,a1=-12,
∴4×(-12)+6d=9×(-12)+36d
解得d=2…(3分)
∴an=−12+2(n−1)=2n−14,Sn=−12n+n(n−1)=n2−13n…(7分)
(2)当n≤6时,an<0,|an|=-an,
Tn=-(a1+a2+…+an)=−Sn=13n−n2=13n-n2,…(10分)
当n≥7时,an≥0,
Tn=-(a1+a2+…+a6)+(a7+…+an)=Sn−2S6=n2−13n+84
=Sn-2(a1+a2+…+a6)
=n2-13n+84…(14分)