1x2+2x3+3x4+.+100x101=

问题描述:

1x2+2x3+3x4+.+100x101=

1x2+2x3+3x4+.+100x101= 的通项公式An=n*(n+1)=n²+n 前n项和Sn=(1²+2²+……+n²)+(1+2+……+n) =n(n+1)(2n+1)/6+n(n+1)/2 所以 1x2+2x3+3x4+.+100x101=S(100) =100*101*201/6+100*101/2=34340...