棱长都相等的三棱锥叫做正四面体,在正四面体ABCD中E,F分别是棱BC和AD之中点,则EF和AB所成角的大小为( )

问题描述:

棱长都相等的三棱锥叫做正四面体,在正四面体ABCD中E,F分别是棱BC和AD之中点,则EF和AB所成角的大小为( )

棱长都相等的三棱锥叫做正四面体,在正四面体ABCD中E,F分别是棱BC和AD之中点,则EF和AB所成角的大小为(45°)
将此在四面体补全成为一个正方体,可以发现EF是正方体两个相对面中心的连线,AB是正方体侧面的对角线.