在光滑水平地面上,静止着一个质量为M=4kg的小车.如图所示,在车的最右端有一个质量为m=1kg的大小不计的物体,已知物体与小车之间的动摩擦因数为0.2,小车的长度L=2m,现在用恒定的水
问题描述:
在光滑水平地面上,静止着一个质量为M=4kg的小车.如图所示,在车的最右端有一个质量为m=1kg的大小不计的物体,已知物体与小车之间的动摩擦因数为0.2,小车的长度L=2m,现在用恒定的水平力F=14N向右拉动小车,求F拉动3s时,小车的速度多大?(设最大静摩擦力等于滑动摩擦力).(g=10m/s2)
答
假设M、m一起向前加速,则加速度a为:
由F=(M+m)a
得:a=
=F M+m
m/s2=2.8m/s214 4+1
以m为研究对象,加速度由静摩擦力提供,最大值为:
由fm=mam得:am=
=fm m
=μg=0.2×10m/s2=2m/s2μmg m
因am<a,故M、m不可能一起向前加速,m将在M上滑动
以m为研究对象,受力如图:
f=mam ①,
f=μN ②,
N=mg ③
由①②③可得:am=μg=0.2×10m/s2=2m/s2
以M为研究对象,受力如图:
F-f′=MaM ④
f′=f ⑤
由④⑤得:aM=
=F-f M
m/s2=3 m/s214-2 4
设m滑下M时所用时间为t,则:
aMt2-1 2
amt2=L ⑥1 2
解得:t=
=
2L
aM-am
s=2 s ⑦
2×2 3-2
此时小车的速度vM=aMt=3×2m/s=6m/s ⑧
m滑下后车的加速度aM′=
=F M
m/s2=3.5m/s2 ⑨14 4
3s时车的速度v=vM+aM'(3-2)=6+3.5=9.5m/s ⑩
答:F拉动3s时,小车的速度为9.5m/s.