高中数学,关于圆的
问题描述:
高中数学,关于圆的
已知圆C:(x-2)^2+y^2=2
(1)求与圆C相切,且在两坐标轴轴上截距相等的直线l方程;
(2)从圆C外一点P作圆一条切线,切点为M,O为坐标轴原点,且模|PM|=|PO|,求|PM|最小时点P坐标
我不要一个答案,要过程啊
3L同学你抄也不要那么明显嘛
答
(1)由题意,可设直线L:x+y+b=0.则由题设得:|2+b|/(√2)=√2.===>b=0,或b=-4.故直线L:x+y=0.或x+y-4=0.(2).可设点P(x,y).易知,|PO|^2=x^2+y^2.|PM|^2=|PC|^2-2.由|PM|=|PO|.===>(x-2)^2+y^2-2=x^2+y^2.===>x=1/2.=...