1999-1998+1997-1996+…+3-2+1=_ 1000-99-98-97-96-95-5-4-3-2-1=_.

问题描述:

1999-1998+1997-1996+…+3-2+1=______
1000-99-98-97-96-95-5-4-3-2-1=______.

(1)1999-1998+1997-1996+…+3-2+1
=(1999-1998)+(1997-1996)+…+(3-2)+1
=1+1+…+1+1
=1×999+1
=999+1
=1000;
(2)1000-99-98-97-96-95-5-4-3-2-1
=1000-(99+98+97+96+95+5+4+3+2+1)
=1000-[(99+1)+(98+2)+(97+3)+(96+4)+(95+5)]
=1000-[100+100+100+100+100]
=1000-500
=500.
故答案为:1000,500.