数列极限:设{an}为数列,a为定数.若对任给的正数E,总存在正整数N,使得当n>N时有/an-a/N这一说法呢.
问题描述:
数列极限:设{an}为数列,a为定数.若对任给的正数E,总存在正整数N,使得当n>N时有/an-a/N这一说法呢.
我已经纠结蛮久的了.
如果N是数字的话,那知道n能直接求出N吗?怎么求?
答
N是一个比确定的值大的整数
就比如说,班级要开班会,需要找一个平均分在85分以上的同学做一个学习心得的演讲,那么我们只要找到一个大于85分的同学就可以了,无论他是多少分都可以,只要大于85分.
这里85分就是所谓的N,所以我们只要找到这个N,对于任何n>N,都满足我们的条件;
即使我们选择N>85,比如说N=90,依然满足我们的要求,而且更精确,这个精确度,数学里面用ε表示
而这个N是否存在,是要我们来证明的,只要证明出这个N存在,无论我们取85还是90,只要大于这个N,都满足我们的条件.
如果还有不明白,可以用Hi联系我