::::::如题已知X1到Xn的求和为1.求证(x1x2+x2x3+…+xnx1)*{[(x1/(x2^2+x2)]+…+[x...

问题描述:

::::::如题已知X1到Xn的求和为1.求证(x1x2+x2x3+…+xnx1)*{[(x1/(x2^2+x2)]+…+[x...
::::::如题已知X1到Xn的求和为1.求证(x1x2+x2x3+…+xnx1)*{[(x1/(x2^2+x2)]+…+[xn/(x1^2+x1)]}大于等于n/(1+n)

x1x2+x2x3+````+xn-1xn≤((n-1)/n)(x1^2+x2^2+````+xn^2)
当且仅当n=2时不等式成立,
证明:
n=2时,不等式等价于(x1-x2)^2/2≥0成立.
n≥3时,取x1=xn=n-1,x2=x3=……=x(n-1)=n,代入,左-右=2(n(n-3)+1)/n>0,不等式不成立.
所以n=2.