随机变量(X,Y)概率密度为f(x,y)=e^(-y)(0
问题描述:
随机变量(X,Y)概率密度为f(x,y)=e^(-y)(0
答
1.f(X,Y)关于X的边缘概率密度fX(x)=f(x,y)对y积分,下限x,上限无穷,结果fX(x)=e^(-x)2.f(X,Y)关于Y的边缘概率密度fY(y)=f(x,y)对x积分,下限0,上限y,结果fY(y)=ye^(-y)3.f(x,y)=e^(-y)不等于fX(x)*fY(y),故X和Y不独立4...请问下,f(x,y)在直线x=0,y=x,y=-x 1,这些时怎么确定的?