若|m-3 |+(n+2)^2+√8p-5=0,则1/4m-n+p的立方根为
问题描述:
若|m-3 |+(n+2)^2+√8p-5=0,则1/4m-n+p的立方根为
答
|m-3 |+(n+2)^2+√8p-5=0
∴m-3=0
n+2=0
8p-5=0
∴m=3
n=-2
p=5/8
∴1/4m-n+p的立方根
=3/4+2+5/8的立方根
=27/8的立方根
=3/2