用因式分解法解下列方程: (1)(2x+1)2-x2=0; (2)(x-1)(x+2)=2(x+2); (3)x2+3x-4=0; (4)(2x-1)2+3(2x-1)+2=0.
问题描述:
用因式分解法解下列方程:
(1)(2x+1)2-x2=0;
(2)(x-1)(x+2)=2(x+2);
(3)x2+3x-4=0;
(4)(2x-1)2+3(2x-1)+2=0.
答
(1)分解因式,得[(2x+1)+x][(2x+1)-x]=0.
(3x+1)(x+1)=0,
3x+1=0或x+1=0.
解得:x1=13,x2=-1.
(2)移项,得(x-1)(x+2)-2(x+2)=0.
因式分解,得(x+2)(x-3)=0.
x+2=0或x-3=0.
解得:x1=-2,x2=3.
(3)分解因式,得(x-1)(x+4)=0.
x-1=0或x+4=0.
解得:x1=1,x2=-4.
(4)因式分解,得[(2x-1)+1][(2x-1)+2]=0.
2x(2x+1)=0.
2x=0或2x+1=0.
解得:x1=0,x2=-
.1 2