解方程组 :根号2x-y=根号2;x^2-y^2/4=1
问题描述:
解方程组 :根号2x-y=根号2;x^2-y^2/4=1
答
x^2-y^2/4=1
4x^2-y^2=4
(2x-y)(2x+y)=4
因为2x-y=根号2
所以2x+y=4/根号2
2x+y=2根号2
与2x-y=根号2构成方程组
解得:x=3根号2/4
Y=根号2/2