已知等比数列{an}满足an>0,n=1,2等,且a5*a(2n-5)=2^2n,则当n≥1时log2a1+log2a3+..+log2a(2n-1)=
问题描述:
已知等比数列{an}满足an>0,n=1,2等,且a5*a(2n-5)=2^2n,则当n≥1时log2a1+log2a3+..+log2a(2n-1)=
且a5*a(2n-5)=2^2n,n≥3
答
当 n = 3,a5 * a1 = 2^6
即 a1^2 q^4 = 2^6----(1)
当 n = 4 ,a5 * a3 = 2^8
即 a1^2 * q^6 = 2^8----(2)
解得 q = 2,q = -2(因为an>0,舍去)
a1 = 2,a3 = 2^3,a5 = 2^5.a(2n-1) = 2^(2n-1)
log2 a1 + log2 a3 +..+ log2 a(2n-1)
=log2 2 + log2 2^3 +..+ log2 2^(2n-1)
=1 + 3 +.+ (2n-1)
=[ 1 + (2n-1) ] * n / 2
=n^2