如图,AB为⊙O的直径,BC为⊙O的切线,AC交⊙O于点E,D 为AC上一点,∠AOD=∠C,若AE=8,tanA=3/4,求OD的长.
问题描述:
如图,AB为⊙O的直径,BC为⊙O的切线,AC交⊙O于点E,D 为AC上一点,∠AOD=∠C,若AE=8,tanA=
,求OD的长.3 4
答
∵AB为⊙O的直径,BC为⊙O的切线,
∴∠B=90°,
∴∠A+∠C=90°,
∵∠AOD=∠C,
∴∠AOD+∠A=90°,
∴∠ADO=90°,
即OD⊥AC,
∴AD=DE=
AE=1 2
×8=4,1 2
∵tanA=
,3 4
∴OD=AD•tanA=3.