观察下列方程:①x2-2x-2=0;②2x2+4x-1=0;③2x2-4x+1=0;④x2+6x+3=0.上面四个方程中有三个方程的一次项系数有共同特点. (1)请用代数式表示这个特点; (2)用配方法求出具有这一特点的一

问题描述:

观察下列方程:①x2-2x-2=0;②2x2+4x-1=0;③2x2-4x+1=0;④x2+6x+3=0.上面四个方程中有三个方程的一次项系数有共同特点.
(1)请用代数式表示这个特点;
(2)用配方法求出具有这一特点的一元二次方程的根.

(1)察上述四个方程,发现四个方程一次项系数有共同点,可用2n(n是整数)表示.
(2)∵方程的一次项系数为偶数2n(n是整数),则一元二次方程ax2+bx+c=0,变为ax2+2nx+c=0(n2-ac≥0)
解ax2+2nx+c=0
x2+

2n
a
x+
c
a
=0
x2+
2n
a
x+
n2
a2
=-
c
a
+
n2
a2

(x+
n
a
2=
n2−ac
a2

x+
n
a
n2−ac
a

x=-
n
a
±
n2−ac
a

所以一元二次方程2+2nx+c=0(n2-ac≥0)的求根公式为
−n±
n2−ac
a