求微分sin^2x*cos^5x*dx
问题描述:
求微分sin^2x*cos^5x*dx
答
∫(cosx)^5·(sinx)²dx=∫(cosx)^4·(sinx)²d(sinx)=∫[(1-sinx)²]²(sinx)²d(sinx)=∫(sin³x-2sin²x+sinx)² d(sinx)=∫[(sinx)^6+4(sinx)^4+sin²x-4(sinx)^5-4sin...答案应该是1/3(sinx)^3-2/5(sinx)^5+1/7(sinx)^7+C∫(cosx)^5·(sinx)²dx=∫(cosx)^4·(sinx)²d(sinx)=∫(1-sin²x)²·(sinx)²d(sinx)=∫[(sinx)^6+2(sinx)^4+(sinx)^2]d(sinx)=1/3(sinx)^3-2/5(sinx)^5+1/7(sinx)^7+C