如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD. (1)判断直线PD是否为⊙O的切线,并说明理由; (2)如果∠BDE=60°,PD=3,求PA的长.
问题描述:
如图,AB是半圆的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.
(1)判断直线PD是否为⊙O的切线,并说明理由;
(2)如果∠BDE=60°,PD=
,求PA的长.
3
答
(1)PD是⊙O的切线.理由如下:∵AB为直径,∵∠ADB=90°,∴∠ADO+∠ODB=90°.∵∠PDA=∠PBD=∠ODB,∴∠ODA+∠PDA=90°.即∠PDO=90°.∴PD是⊙O的切线.(2)∵∠BDE=60°,∠ADB=90°,∴∠PDA=180°-90°-60...