已知实数a,b满足a2+b2-4a+3=0,函数f(x)=asinx+bcosx+1的最大值记为φ(a,b),则φ(a,b)的最小值为( ) A.1 B.2 C.3+1 D.3
问题描述:
已知实数a,b满足a2+b2-4a+3=0,函数f(x)=asinx+bcosx+1的最大值记为φ(a,b),则φ(a,b)的最小值为( )
A. 1
B. 2
C.
+1
3
D. 3
答
∵实数a,b满足a2+b2-4a+3=0,∴(a-2)2+b2 =1,表示以(2,0)为圆心,以1为半径的圆.
∵函数f(x)=asinx+bcosx+1 的最大值为φ(a,b)=
+1,它的几何意义为原点到点(a,b)的距离加1.
a2+b2
再由点(a,b)在圆a2+b2-4a+3=0上,原点到圆心(2,0)的距离等于2,
故圆上的点到原点的距离的最小值为1,
所以φ(a,b)的最小值为2,
故选B.