曲线:y=ax3+bx2+cx+d在(0,1)点处的切线为l1:y=x+1,在(3,4)点处的切线为l2:y=-2x+10,求曲线C的方程.

问题描述:

曲线:y=ax3+bx2+cx+d在(0,1)点处的切线为l1:y=x+1,在(3,4)点处的切线为l2:y=-2x+10,求曲线C的方程.

已知两点均在曲线C上,y′=3ax2+2bx+c
f′(0)=c,f′(3)=27a+6b+c
l1:y=cx+1 l2:y=(27a+6b+c)(x-3)+4
与已知比较,分别求出d=1,c=1,a=-

1
3
,b=1.
C:y=-
1
3
x3+x2+x+1.