(2009•安徽)△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是(  ) A.120° B.125° C.135° D.150°

问题描述:

(2009•安徽)△ABC中,AB=AC,∠A为锐角,CD为AB边上的高,I为△ACD的内切圆圆心,则∠AIB的度数是(  )
A. 120°
B. 125°
C. 135°
D. 150°

如图.∵CD为AB边上的高,
∴∠ADC=90°,
∴∠BAC+∠ACD=90°;
又∵I为△ACD的内切圆圆心,
∴AI、CI分别是∠BAC和∠ACD的角平分线,
∴∠IAC+∠ICA=

1
2
(∠BAC+∠ACD)=
1
2
×90°=45°,
∴∠AIC=135°;
又∵AB=AC,∠BAI=∠CAI,AI=AI;
∴△AIB≌△AIC(SAS),
∴∠AIB=∠AIC=135°.
故选C.