已知,如图四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F,垂足为O. 求证:(1)M是AD的中点; (2)DF=1/2CD.
问题描述:
已知,如图四边形ABCD是菱形,过AB的中点E作AC的垂线EF,交AD于点M,交CD的延长线于点F,垂足为O.
求证:(1)M是AD的中点;
(2)DF=
CD.1 2
答
证明:(1)连接BD,
∵四边形ABCD是菱形,
∴AO平分∠BAD,AC⊥BD,
∵EF⊥AC,点E是AB中点,
∴EM是△ABD的中位线,
∴M是AD的中点;
(2)在△AME和△DMF中,
∵∠EAM=∠FDM,AM=DM,∠AME=∠DMF,
∴△AME≌△DMF,
∴DF=AE,
∵AE=
AB=1 2
CD,1 2
∴DF=
CD.1 2