若x,y为锐角,cosx=3/5,cos(x+y)=根号3/3,求siny的值

问题描述:

若x,y为锐角,cosx=3/5,cos(x+y)=根号3/3,求siny的值

x,y为锐角,cosx=3/5,cos(x+y)=√3/3
则由平方关系可得:sinx=4/5,sin(x+y)=√6/3
则:siny=sin[(x+y)-x]
=sin(x+y)cosx-cos(x+y)sinx
=(√6/3)(3/5)-(√3/3)(4/5)
=(3√6-4√3)/15则由平方关系可得:sinx=4/5,sin(x+y)=√6/3tangram_guid_1361715994171x,y为锐角,cosx=3/5,cos(x+y)=√3/3sin²x+cos²x=1,得:sin²x=1-cos²x=16/25,所以,sinx=4/5;sin²(x+y)+cos²(x+y)=1,得:sin²(x+y)=1-cos²(x+y)=2/3,所以,sin(x+y)=√6/3