设Y是方程sin(xy)-1/y-x=1所确定的函数,求(1)y|x=o (2) y'|x=o
问题描述:
设Y是方程sin(xy)-1/y-x=1所确定的函数,求(1)y|x=o (2) y'|x=o
答
1)y|x=o
当x=0时
sin(0)-1/y-0=1
得:y|x=0 =-1
(2) y'|x=o
sin(xy)-1/y-x=1
两边对x求导:
cos(xy)(y+xy')+y'/y^2 - 1=0
当x=0时y=-1,
代入得:cos(0)(-1+0)+y'-1=0
得:y=-1
y'|x=0 =2