关于分式的加减.
问题描述:
关于分式的加减.
已知:1/x(x+1)=(1/x - 1/x+1)*1,
1/x(x+2)=(1/x - 1/x+2)*1/2,
1/x(x+3)=(1/x - 1/x+3)*1/3,
…………
1/x(x+10)=(1/x - 1/x+10)*1/10
则:1/(x+m)(x+n)=_________________;
探究:若|ab-2|+(b-1)²=0,试求1/ab + 1/(a+1)(b+1) + 1/(a+2)(b+2) + 1/(a+3)(b+3) +……+ 1/(a+2007)(b+2007) + 1/(a+2008)(b+2008) 的值.
答
1/(x+m)(x+n)=[1/(x+m)-1/(x+n)]*1/(n-m)|ab-2|+(b-1)²=0ab-2=0,b-1=0b=1a=21/ab + 1/(a+1)(b+1) + 1/(a+2)(b+2) + 1/(a+3)(b+3) +……+ 1/(a+2007)(b+2007) + 1/(a+2008)(b+2008) =1/2+1/6+1/12+1/20+……+1...