1.有4个不同的正整数,m、n、p、q满足(7-m)(7-n)(7-p)(7-q)=4,则m+n+p+q=?
问题描述:
1.有4个不同的正整数,m、n、p、q满足(7-m)(7-n)(7-p)(7-q)=4,则m+n+p+q=?
2.a、b、c为正整数,且|a-b|的5002次方加上|c-a|的4003次方=1,计算(c-a)的2006次方+|a-b|+|b-c|的375次方
3.数列:1/1,1/2,2/1,1/3,2/2,3/1,1/4,2/3,3/2,4/1,1/5,2/4,3/3,4/2,5/1,1/6.
(1)若将从左起第m个数记为F(m),则当F(m)=2/2011时,求m的值和这个数的积
(2)若将未经约分且分母为2的数记为C,他后面的数记为d,是否存在这样的c、d,使cd=2001000
4.代数式|2a+1|+1的最小值是多少?
5.4/x+1是整数,则x可等于
6.把数2011加上他的1/2,再加上所得输得1/3,再加上所得数的1/4,再加上所得数的1/5.
以此类推,当加到上次结果的1/2011时,所得结果是多少?
答
第一题:m+n+p+q=28 【分析】因为m,n,p,q是不同的正整数,所以(7-m)、(7-n)、(7-p)、(7-q)都是不同的整数.四个不同的整数的积等于4,这四个整数为(-1)、(-2)、1、2所以,(7-m)、(7-n)、(7-p)、(7-q)分别为 (-1)、(-2...