求合力公式的证明
问题描述:
求合力公式的证明
答
F1与F2之间夹角是α
F1与F的夹角是β,
首先画个图,按照平行四边形法则作
分别作出与F1.F2平行的辅助线
设F1与F2的起点为O
则有平行四边形F1-O-F2-F
∠F1OF2=α,则∠OF2F=180°-α
由余弦定理知
F^2=F1^2+F2^2-2F1F2*cos(180°-α)
=根号下F1^2+F2^2+2F1F2cosα
根据该图将与F2平行的辅助线进行正交分解
则可以得出
tanβ=F2sinα/(F1+F2cosα)
[注:F^2为F的平方]