已知函数g(x)=1/3axˇ3+2xˇ2-2x,函数f(x)是函数g(x)的导函数
问题描述:
已知函数g(x)=1/3axˇ3+2xˇ2-2x,函数f(x)是函数g(x)的导函数
当a∈(0,+∞)时,若存在一个与a相关的负数M,使得对任意x∈[M,0]时,-4≤f(x)≤4恒成立,求M得最小值及相应的a值
答
f(x)=ax^2+4x-2.
要使m最小,即那个使|f(x)|=4的x1最小,越远离原点的负值.
画出f(x)的图形.对称轴为x=-2/a;在x=0处,取值f(x)=-2;
在x∈[m,0]能使成立得x只有两处,对称轴和x1处.
1,如果x=-2/a对称轴处,|f(x)|>4,
即4/a+2>4,a