是否存在一个实数k,使方程8x2+6kx+2k+1=0的两个根是一个直角三角形的两个锐角的正弦?
问题描述:
是否存在一个实数k,使方程8x2+6kx+2k+1=0的两个根是一个直角三角形的两个锐角的正弦?
答
设直角三角形两个锐角为α,β,则sinα,sinβ是方程8x2+6kx+2k+1=0的两个根.
∵α+β=90°,∴sinβ=cosα
根与系数的关系,得
sinα+cosα=−
①3k 4 sinαcosα=
②2k+1 8
①2-2×②得9k2-8k-20=0
∴k1=2,k2=-
10 9
当k=2时变为8x2+12x+5=0,
△=144-160<0
∴k=2舍去.
将k=-
代入②,得sinα•cosα=sinα•sinβ=-10 9
,11 72
∴sinα,sinβ异号,应有sinα<0或sinβ<0,实际上sinα>0,sinβ>0,
∴k=-
不满足题意,10 9
∴k值不存在.