已知椭圆x^2/a^2+y^2/b^2=1的右焦点为F(1,0),M 为椭圆上的顶点,O为坐标原点,且三角形OMF是等腰三角形,问是否存在直线l交椭圆于P、Q两点、且使点F为三角形PQM的垂心并求出直线方程
问题描述:
已知椭圆x^2/a^2+y^2/b^2=1的右焦点为F(1,0),M 为椭圆上的顶点,O为坐标原点,且三角形OMF是等腰三角形,问是否存在直线l交椭圆于P、Q两点、且使点F为三角形PQM的垂心并求出直线方程
三角形OMF是等腰直角三角形
答
∵三角形OMF是等腰直角三角形,∴OM=OF=1,b=1,a²-1=1,a²=2,椭圆为:x²/2+y²=1,使点F为三角形PQM的垂心,MF⊥PQ,MF的斜率=-1,则直线l的斜率=1,设直线方程为:y=x+b,与x²/2+y²=1联立,x=[-...