在台球桌矩形,ABCD上,放有两个球P和Q,恰有∠PAB和∠QAD相等.如果打击球P使它撞在AB的M点反弹后撞到球Q,其路线记为P→M→Q;如果打击球 Q,使它撞在AD的N点反弹后撞到球P,其路线记为Q
问题描述:
在台球桌矩形,ABCD上,放有两个球P和Q,恰有∠PAB和∠QAD相等.如果打击球P使它撞在AB的M点反弹后撞到球Q,其路线记为P→M→Q;如果打击球 Q,使它撞在AD的N点反弹后撞到球P,其路线记为Q→N→P.证明:P→M→Q与Q→N→P的路线长相等.
答
证明:如图,台球P撞AB于M反弹打到Q,满足∠PMB=∠QMA,即对P的路线是作P关于BA的对称点P1,连接P1Q交 BA于 M点,则P→M→Q为球P的路线,再作Q关于AD的对称点Q1连接PQ1交AD于N点,则Q→N→P为球Q的路线,...