有9个小球,外形相同,其中一个球的重量与其他的不同.现有一个天平.求最少称几次能将此球称出?
问题描述:
有9个小球,外形相同,其中一个球的重量与其他的不同.现有一个天平.求最少称几次能将此球称出?
答
2次称不出来,3次能称12个的
原题为:
有十二个小球特征相同,其中只有一个质量异常,要求用一部没有砝码的天平称三次,将那个质量异常的球找出来.
设标准小球质量为w,并代表任意一个正常小球,将12个小球依次编号为a1,a2,...,a12,分组为:
a1,a2 ,a3 ,a4 为A1组
a5,a6 ,a7 ,a8 为A2组
a9,a10,a11,a12 为A3组
==(第一次)1选定任意2组--取A1,A2进行比较,如果
1 A1=A2 则A3组为异常球组
重新分组为:
B1:a9 a10
B2:a11 w
B3:a12 w
====(第二次)取B2 B3 任意1组--B2 与 B1 进行比较,如果
1.1 B1=B2 则 B1 B2 为正常组,B3(a12,w)为异常组,异常球为a12
1.2 B1 != B2 B3(a12,w) 为正常组,以B1