有100名学生要到离学校33千米的某公园,学生的步行速度是每小时5千米,学校只有一辆能坐25人的汽车,汽车的速度是每小时55千米,为了花最短的时间到达公园,决定采用步行与乘车相结合
问题描述:
有100名学生要到离学校33千米的某公园,学生的步行速度是每小时5千米,学校只有一辆能坐25人的汽车,汽车的速度是每小时55千米,为了花最短的时间到达公园,决定采用步行与乘车相结合的办法,那么最短时间为______.
答
汽车的速度是步行的:
55÷5=11(倍);
学生需要分成:
100÷25=4(组).
如要在最短的时间内到达,应使汽车与行人使终在运动,中间不停留且同时到达目的地,由此可设计如下方案:
如图:
发时,第一组乘车,其他三组同学步行.当汽车行到某处返回接第二组同学时,人和车应走12段的路程.
整体考虑,步行走了一段路程,即图中AB,汽车走了11段路程(图中AG+GB).
人和车总是这样不停地行走,就会同时到达终点.
根据这个方案,学校到采摘园的路程就被平均分成了9份,汽车共行了这样的39份路程,那么题目隐藏的条件也就出现了:一段路程×9=33.可得等量关系:汽车速度×时间=汽车行39段的路程.
即:33÷9×39÷55=2.6(小时).
故答案为:2.6小时.