如图,ABCD是正方形,点E在BC上,DF⊥AE于F,请你在AE上确定一点G,使△ABG≌△DAF,并说明理由.
问题描述:
如图,ABCD是正方形,点E在BC上,DF⊥AE于F,请你在AE上确定一点G,使△ABG≌△DAF,并说明理由.
答
证明:作BG⊥AE于G,
∵四边形ABCD是正方形,DF⊥AE,
∴∠AFD=∠AGB=90°,
∵∠DAF+∠GAB=90°,∠DAF+∠ADF=90°,
∴∠ADF=∠GAB,又AD=AB,
∴△ADF≌△BAG.