微分方程的题目~

问题描述:

微分方程的题目~
建立具有下列性质的曲线所满足的微分方程~\x0c1,曲线上任一点的切线与该点的向径夹角为零~
y'=(y+xtanα)/(x-ytanα)

设曲线参数表示为r=r(t),所以由条件可得微分方程:
分两种情况
1.dr/dt=k*r,其中k为非零常数
2.dr/dt=k,k为任意常向量
你的结果就是由上面的式子得到的:
在dr/dt=k*r中,由于k的任意性,可设k为1/tanα
由参数表示x=r(t)*cos(t),y=r(t)*sin(t)
所以由参数坐标求导法则可以得到
dy/dx=[r'(t)*sin(t)+r(t)*cos(t)]/[r'(t)*cos(t)-r(t)*sin(t)]
将r'(t)=k*r(t)=r(t)*(1/tanα)代入得
y'=[r(t)*(1/tanα)*sin(t)+r(t)*cos(t)]/[r(t)*(1/tanα)*cos(t)-r(t)*sin(t)]
再将其中的r(t)*cos(t)和r(t)*sin(t)还原为x,y即得结果
y'=(y+xtanα)/(x-ytanα)