a>0,b>0,a+b=1 求证(a+1/a)*(b+1/b)≥25/4

问题描述:

a>0,b>0,a+b=1 求证(a+1/a)*(b+1/b)≥25/4

[a+(1/a)]*[b+(1/b)]=ab+(a/b)+(b/a)+(1/ab)≥ab+2√[(a/b)(b/a)]+[(a+b)/ab]=ab+2+(1/b)+(1/a)=ab+2+[(a+b)/b]+[(a+b)/a]=ab+2+[(a/b)+1]+[1+(b/a)]=ab+4+(a/b)+(b/a)≥ab+4+2√[(a/b)(b/a)]=ab+6因为1=a+b≥2√(ab...